Local Correlation with Local Vol and Stochastic Vol: Towards Correlation dynamics?

Pascal DELANOE, Structured Equity Derivatives

HSBC

10th January 2014
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References
Recent (or less recent) developments in local correlation

- Avellaneda: local formula + approximation
- Reghai: based on fixed point algorithm, but slow convergence (cf. based on implied vols)
- Langnau: pathwise equality of covariance to calibrate local correl, too many constraints? (cf. sufficient but not necessary condition)
- Sbai-Jourdain: top-down approach (insert index in stock diffusion) instead of usual bottom up, but issues since introduces historical parameter β
- Piterbarg: markovian projection, calibration based on approximations (not specific to correlation)
- Guyon-Henry-Labordere: "Particle Methods" (not specific to correlation)

Our approach = similar to Particle Methods, but method slightly differs for specific points.
"Overomega" Definition

Banks usually short correlation (cf. sell basket calls/puts, sell WO Calls,...) => need to overprice Correlation.
Constraint : needs to remain PSD!
Solution : use the convexity for space of correlation matrix (standard, also used in shrinkage methods)

We introduce "Overomega" (not a standard notation) :

\[\rho_{i,j}^{Pricing} = (1 - \omega) \rho_{i,j}^{Histo} + \omega \]

Generally \(\omega \approx 15\% \).
Used to give conservative prices.

Remember : not always true (sell spread options,...)!
Conservative pricing : Need to choose adapted target matrix (cf. crossed gamma sign), with \(PricingMatrix = (1 - \omega)InitMatrix + \omega TargetMatrix \)

But Issues when Crossed gammas change sign locally (\(\Rightarrow \) uncertain correlation pricing)
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References

Structured Equity Research (HSBC)
Why does correlation matters: PnL Equation

Consider a product with value P that we buy. Pricing equation

$$ r_t P = \frac{\partial P}{\partial t} + \sum_i \frac{\partial P}{\partial x_i} r_t x_i + \sum_{i,j} \frac{1}{2} \frac{\partial^2 P}{\partial x_i \partial x_j} \rho_{i,j} \sigma_i \sigma_j x_i x_j $$

PnL equation (integrated = "tracking error"):

$$ \Delta P - r P \Delta t - \sum_i \frac{\partial P}{\partial x_i} (\Delta S_i - r S_i \Delta t) = \frac{\partial P}{\partial t} \Delta t + \sum_i \frac{\partial P}{\partial x_i} \Delta S_i + \sum_{i,j} \frac{1}{2} \frac{\partial^2 P}{\partial x_i \partial x_j} \Delta S_i \Delta S_j - r P \Delta t - \sum_i \frac{\partial P}{\partial x_i} (\Delta S_i - r S_i \Delta t) $$

$$ = \frac{1}{2} \sum_i \frac{\partial^2 P}{\partial x_i^2} (\Delta S_i^2 - \sigma_i^2 (S_i)^2 \Delta t) + \sum_{i,j} \frac{\partial^2 P}{\partial x_i \partial x_j} (\Delta S_i \Delta S_j - \rho_{i,j} \sigma_i \sigma_j S_i S_j \Delta t) $$

Analysis:

- Link between Cegas (Correlation Greeks) and Crossed Gammas.
- Short Crossed Gamma and correlated movement, loses money
- Need to use a model with a theta coherent with these crossed gammas
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References
What is correlation?

Correlation not a "clean" quantity, more adequate quantity = covariance.

Correlation = for given vol and given covariance, way to introduce link between brownians (generally, "Gaussian copula")

Example of issue: correlation can be more than 1 due to time zones (Bergomi) or other (model) reasons. No way (that I know of) to deal with this issue in Monte-Carlo. (and seems to present numerical issues in PDE and Fourier)

Natural question: what is Implied Correlation?

Implied Vol

Rebonato: "wrong number to put in the wrong formula to get the right price"

Implied Correlation

"wrong number to put in the wrong pricer given a wrong volatility model to get the right price"
Observe correlation

Implied Correlation Data

Example: ICJ/JCJ/KCJ rotating indexes.

Currently: JCJ (Jan. 2014) or KCJ Index (Jan. 2015). Different issues

- Reference Vol Model = Black-Scholes
- Based on approximate formula (most likely path)
- Implied Volatility = for stocks, ATM Spot Implied Vol and not ATMF implied Vols
- Based on only 50 underlyings of SP500 (liquidity issues)
Interpolated 1Y Implied Correlation from ICJ/JCJ/KCJ (since 2007). Evolution.

Figure: Evidence of Correlation Skew
Evidence of correlation Skew based on Historical Data

Interpolated 1Y Implied Correlation from ICJ/JCJ/KCJ (since 2007)

Figure: Evidence of Correlation Skew
Evidence based on Implied Data(1)

![Graph showing Index versus Basket Smile: 1Y smile 06/03/2013 (SMI)](image)

Figure: Basket Smile versus Index Smile: SMI case

Consequence: market expects more correlation on the downside, and less on the upside.
Evidence based on Implied Data(2)

Figure: Index Implied Correlation

\[\Rightarrow \text{Correlation increases when basket decreases.} \]

Note: Here, Overomega skew and not Correlation Skew (ratio \(1 - \bar{\rho}\) between both)
Rationale behind correlation skew

Correlation Skew = market evidence.
Main reasons:

- Law of demand and supply: more buyers on the downside (protection)
- Systemic risk: big downward moves, risk linked to economy, all stocks impacted

Upside: generally decreases, but (sometimes) systemic "rescue". When good news concerning the economy (rates decrease, central bank actions,...), all stocks impacted (and correlation increases).
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References
The purpose of modelling correlation

Different situations:
Our focus: liquid basket options
However, no real hedge strategy since basket composition changes:

⇒ essentially Macro Management Tool.

Steps:
1. Decorrelate initial correlation matrix
2. Write Local Formula linking two different models
3. Use fixed-point algorithm (or particle method) to calibrate
Decorrelation Step

Ideas:
- Decorrelate initial correlation matrix
- Use parametric local overomega to recorrelate the matrix

Decorrelation:

$$\rho_{i,j}^D = (1 - \omega_1)\rho_{i,j}^H + \omega_1 \text{ with } \omega_1 < 0$$

$$\iff \rho_{i,j}^H = (1 - \omega_0)\rho_{i,j}^D + \omega_0 \text{ with } \omega_0 = \frac{\omega_1}{\omega_1 - 1}$$

In practice, maximize $|\omega_1|$ so that matrix remains PSD and with positive correlation.
Foreword

Standard Models are simpler to handle with local vol, local correl adjustments:

- Fixed Point algorithm (Reghai) +
- Local Formulae (Dupire) +
- Numerical Evaluation of conditional expectations (not specifically linked to finance) =
- Local fixed-point methods (particular case for explicit schemes with one iteration = Particle method)

Fixed Point problem: contracting function(?) on a space of stochastic processes. Existence still needs to be solved theoretically.
Remember: how to prove Dupire’s formula?

Idea: Derive Market Information/Observables

\[
dS_t = (r_t S_t - Q_t - q_t S_t) dt + \sigma(t, S_t) S_t dW_t
\]

so that (undiscounted calls) \(dC\)

\[
d\mathbb{E}^Q(S_t - K)^+ = \frac{\partial C}{\partial t} dt
\]

\[
= \mathbb{E}^Q d(S_t - K)^+
\]

\[
= \mathbb{E}^Q (dS_t 1_{S_t > K} + \frac{1}{2} d < S > t \delta_{S_t=K})
\]

\[
= \mathbb{E}^Q ((r_t - q_t)S_t 1_{S_t > K} - Q_t 1_{S_t > K} + \frac{1}{2} \sigma(t, K)^2 K^2 \delta_{S_t=K}) dt
\]

But: \(\frac{\partial C}{\partial K}\)

\[
= -\mathbb{E}^Q (1_{S_t > K})
\]

Or: \(C - K \frac{\partial C}{\partial K}\)

\[
= \mathbb{E}^Q (S_t 1_{S_t > K})
\]

And: \(\frac{\partial^2 C}{\partial K^2}\)

\[
= \mathbb{E}^Q (\delta_{S_t=K})
\]

So that: \(\frac{\partial C}{\partial t}\)

\[
= (r_t - q_t)(C - K \frac{\partial C}{\partial K}) + Q_t \frac{\partial C}{\partial K} + \frac{1}{2} \sigma(t, K)^2 K^2 \frac{\partial^2 C}{\partial K^2}
\]

And finally: \(\sigma(t, K)^2\)

\[
= \frac{\frac{\partial C}{\partial t} - (r_t - q_t)(C - K \frac{\partial C}{\partial K}) - Q_t \frac{\partial C}{\partial K}}{\frac{1}{2} K^2 \frac{\partial^2 C}{\partial K^2}}
\]
Our framework = Reghai’s

Local Correlation introduced through the use of an overomega approach.

What is Overomega ? \(\rho_{i,j}^{Pricing} = (1 - \omega)\rho_{i,j}^{Historical} + \omega \)

First Model = Simple Local Vol Model with continuous dividends (mix of prop and cash dividends).

\[
dS_t^i = (r_t S_t^i - Q_t^i - q_t^i S_t^i)dt + \sigma(t, S_t^i) S_t^i \sqrt{1 - \omega(t, I_t^S)} dW_t^i + \sqrt{\omega(t, I_t^S)} dW_t^\perp
\]

with \(Q_t^i \) and \(q_t^i \) deterministic and:

\[
I_t^S = \sum_{i=1}^{N} w_i S_t^i
\]

\[
< dW_t^i, dW_t^j > = \rho_0^{ij} dt
\]

\[
< dW_t^i, dW_t^\perp > = 0 \forall i
\]
Local Correlation formula (general case)

Second Model = simple local vol model written on the index (continuous divs):

\[dl_t = (r_t l_t - Q_t - q_t l_t) dt + l_t \sigma(t, l_t) dW_t \]

with \(Q_t \) and \(q_t \) deterministic.

Same Basket Call prices in both models (Specific set of \(w_i \)):

\[C(K, t) = \mathbb{E}^Q(\exp(-\int_0^t r_s ds)(l_t - K)^+) \]

\[= \mathbb{E}^Q(\exp(-\int_0^t r_s ds)(l_t^S - K)^+) \forall t, K \]

but:

\[\frac{\partial C}{\partial t} dt = \mathbb{E}^Q(\exp(-\int_0^t r_s ds)((dl_t^S - r_t(l_t^S - K) dt)1_{l_t^S > K} + \frac{1}{2} d < l_t^S > t \delta_{l_t^S = K})) \text{ in basket model} \]

\[\frac{\partial C}{\partial t} dt = \mathbb{E}^Q(\exp(-\int_0^t r_s ds)((dl_t - r_t(l_t - K) dt)1_{l_t > K} + \frac{1}{2} d < l_t > t \delta_{l_t = K})) \text{ in index model} \]
Local Correlation formula (2)

\[
\mathbb{E}^{Q_t}(\sum_i w_i(Q^i_t + q^i_t S^i_t) + r_t K dt) 1_{I^S_t > K} + \frac{1}{2} d < I^S_t > t \delta_{I^S_t = K}) = \mathbb{E}^{Q_t}(\sum_i w_i q^i_t S^i_t) 1_{I^S_t > K} + \frac{1}{2} d < I^S_t > t \delta_{I^S_t = K})
\]

but:

\[
\mathbb{E}^{Q_t}(d < I^S_t > t \delta_{I^S_t = K}) = \mathbb{E}^{Q_t}(d < I^S_t > t | I^S_t = K) \frac{\partial^2 C}{\partial K^2}
\]

and also:

\[
\mathbb{E}^{Q_t}(I^S_t > K) = \mathbb{E}^{Q_t}(I^S_t > K) = \frac{1}{B(0, t)} (C - K \frac{\partial C}{\partial K})
\]

\[
\mathbb{E}^{Q_t}(1_{I^S_t > K}) = \mathbb{E}^{Q_t}(1_{I^S_t > K}) = \frac{1}{B(0, t)} (- \frac{\partial C}{\partial K})
\]

Condition on the forward \((K = 0)\):

\[
Q_t = \sum_i w_i Q^i_t
\]
\[
q_t = \frac{\mathbb{E}^{Q_t}(\sum_i w_i q^i_t S^i_t)}{\mathbb{E}^{Q_t}(I_t)}
\]
Local Correlation formula (3)

\[
\omega(t, K) = \left(K^2 \sigma(t, K)^2 + \frac{2}{\partial K} \frac{\partial C}{\partial K} \left(\frac{\mathbb{E}^Q((q_t l_t - r_t K)1_{t > K})}{\mathbb{E}^Q(1_{t > K})} - \frac{\mathbb{E}^Q(\sum_i w_i q^i S_t - r_t K)1_{t > K}}{\mathbb{E}^Q(1_{t > K})} \right) \right) \frac{\mathbb{E}^Q(\sum_{i,j} w_i w_j S_{t}^i S_{t}^j \sigma(t, S_t^i) \sigma(t, S_t^j)(1 - \rho_{i,j})|I_t^S = K)}{\mathbb{E}^Q(\sum_{i,j} w_i w_j S_{t}^i S_{t}^j \sigma(t, S_t^i) \sigma(t, S_t^j) \rho_{i,j} |I_t^S = K)}
\]
Local Correlation formula: simplest formula

Particular cases: no dividends, deterministic interest rates

\[
\omega(t, K) = \frac{K^2 \sigma(t, K)^2 - \mathbb{E}^Q \left(\sum_{i,j} w_i w_j S_t^i S_t^j \sigma(t, S_t^i) \sigma(t, S_t^j) \rho_{i,j}^0 | I_t^S = K \right)}{\mathbb{E}^Q \left(\sum_{i,j} w_i w_j S_t^i S_t^j \sigma(t, S_t^i) \sigma(t, S_t^j) (1 - \rho_{i,j}^0) | I_t^S = K \right)}
\]

Dupire/Avellaneda/Piterbarg/Guyon-PHL formula.

Case where constant vol and null correlation:

\[
\omega = \frac{\sigma_i^2 - \frac{1}{N} \sigma_S^2}{\sigma_S^2 \left(1 - \frac{1}{N}\right)}
\]

Well known formula: see Bossu for example.

Idea = Depends on covariance: \(\frac{\text{Implied} - \text{Minimum}}{\text{Maximum} - \text{Minimum}}\)
Local Correlation formula: focus on dividends

\[
\frac{\mathbb{E}^{Q_t}((q_t l_t - r_t K)1_{l_t > K})}{\mathbb{E}^{Q_t}(1_{l_t > K})} - \frac{\mathbb{E}^{Q_t}((\sum_i w_i q_i S^i_t - r_t K)1_{l^S_t > K})}{\mathbb{E}^{Q_t}(1_{l^S_t > K})}
\]

Stochastic rate term + Dividend term.

Deterministic interest rates: first term vanishes since \(r_t \) in factor and \(\mathbb{E}^{Q_t}(1_{l_t > K}) = \mathbb{E}^{Q_t}(1_{l^S_t > K}) = \frac{1}{\mathbb{B}(0, t)} (- \frac{\partial C}{\partial K}) \)

Residual term linked to dividends: cf. no arbitrage condition in case of discrete dividends:

\[
\mathbb{E}^{Q_t}((l_t - K)^+) - \mathbb{E}^{Q_t}((l_{t-} - K)^+) \simeq \mathbb{E}^{Q_t}((l_{t-})1_{l_t > K}) \\
\mathbb{E}^{Q_t}((l^S_t - K)^+) - \mathbb{E}^{Q_t}((l^S_{t-} - K)^+) \simeq \mathbb{E}^{Q_t}((l^S_{t-})1_{l^S_t > K})
\]

but:

\[
l_t - l_{t-} = -(Q_t + q_t l_{t-}) \\
l^S_t - l^S_{t-} = \sum_i -w_i(Q^i_t + q_t S^i_{t-})
\]

leads to (first order in dividend level):

\[
\mathbb{E}^{Q_t}(q_t l_t 1_{l_t > K}) = \mathbb{E}^{Q_t}(\sum_i w_i q^i_t S^i_t 1_{l^S_t > K})
\]
Local Correlation formula: focus on dividends (2)

If discrete dividends: impossible to achieve for each K if q_t constant (except in particular cases: null volatility or $q_t = q^i_t \forall i$)

\implies two models are generally inconsistent.

\implies Need to use continuous div model

One more derivation in $K +$ same density $(\frac{\partial^2 C}{\partial K^2})$ give:

$$
\mathbb{E}^Q(t)(q_t | I_t = K) = \mathbb{E}^Q(t)\left(\sum_i w_i q_t^i S_t^i | I_t^S = K\right)
$$

cf. Markovian projection: sufficient but not necessary condition

Other possible conditions:

$$
\begin{aligned}
q_t &= \frac{\mathbb{E}^Q(\sum_i w_i q_t^i S_t^i)}{\mathbb{E}^Q(t)} \\
\omega(t, K) &= \left(\kappa^2 \sigma(t, K)^2 - \frac{2(C - K \frac{\partial C}{\partial K})}{\frac{\partial^2 C}{\partial K^2}} \left(q_t - \mathbb{E}^Q(\sum_i w_i q_t^i S_t^i | I_t^S > K)\right)\right) - \mathbb{E}^Q(\sum_{i,j} w_i w_j S_t^i S_t^j \sigma(t, S_t^i) \sigma(t, S_t^j) \rho_{i,j}^0 | I_t^S = K)
\end{aligned}
$$

Comments:

- ω helps recover from the generated error
- in practice, prop divs smile correction can be neglected
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References
Why basket local correlation?

Other possible local correlations!

Reghai: Consider WO, BO, Rainbow local correlation to handle chewing-gum effect

Example: Worst Of Local Correlation (for WO products)
Two models: Worst Of Model and standard model with WO local correlation

WO Model:
\[
\frac{dWO_t}{WO_t} = (r_t - q_t)dt + \sigma(t, WO_t)dW_t
\]

Standard Model:
\[
\frac{dS_t^i}{S_t^i} = (r_t - q_t^i)dt + \sigma^i(t, S_t^i)(\sqrt{1 - \omega(t, \tilde{WO}_t)}dW_t^i + \sqrt{\omega(t, \tilde{WO}_t)}dW_t^⊥)
\]

with: \(\tilde{WO}_t = \min_i \left(\frac{S_t^i}{S_{t_0}^i} \right) \)

and: \(<dW_t^i, dW_t^j> = \rho_{i,j}^0(t)dt \)
Why basket local correlation?

Worst Of Correlation (2)

Derive WO Calls in both models (calculation a little heavy):

WO model: \[
\frac{\partial C_{WO}}{\partial t} = -r_tC_{WO} + (r_t - q_t)(C_{WO} - K \frac{\partial C_{WO}}{\partial K}) + \frac{1}{2} K^2 \sigma^2(t, K) \frac{\partial^2 C_{WO}}{\partial K^2}
\]

WO local correl model: \[
\frac{\partial C_{WO}}{\partial t} = -r_tC_{WO} + (r_t - q_t(K))(C_{WO} - K \frac{\partial C_{WO}}{\partial K}) + \frac{1}{2} K^2 \mathbb{E}^q(\sigma_{WO}(t, K)^2 | \text{WO} = K) \frac{\partial^2 C_{WO}}{\partial K^2} - \frac{1}{2} \sum_{i>j} \mathbb{E}^q(d < S_t^i, S_t^j > + d < S_t^i, S_t^j > - 2d < S_t^i, S_t^j >) \delta_{S_t^i = S_t^j, 1, \text{WO}_t > K, \text{WO}_t = S_t^i, 1} - \frac{1}{2} \sum_{i>j} \mathbb{E}^q(2(1 - \rho_{i,j}^0(t))\sigma_i(t, K)\sigma_j(t, K) \delta_{S_t^i = S_t^j, 1, \text{WO}_t > K, \text{WO}_t = S_t^i, 1} - \frac{1}{2} \sum_{i>j} \mathbb{E}^q(2\sigma^2_i(t, K) - \sigma^2_j(t, K)) \delta_{S_t^i = S_t^j, 1, \text{WO}_t > K, \text{WO}_t = S_t^i, 1}) \]

with: \[q_t^{WO}(K) = \frac{\mathbb{E}^q(q_t^{WO} \text{WO} > K)}{\mathbb{E}^q(\text{WO} > K)}
\]

Condition on WO Forward: \[q_t = q_t^{WO}(0)
\]

If \[q_t^{WO}(K) = q_t \] (not true in general, else add corrective term to overomega like in basket formula) and \[\rho_{i,j}(t, K) = \rho_{i,j}^0(t) + \omega(t, K)(1 - \rho_{i,j}^0(t)), \] one more \(K\) derivation gives:

\[\omega(t, K) = \frac{\frac{\partial}{\partial K} \left(K^2 \frac{\partial^2 C_{WO}}{\partial K^2} \right) \left(\mathbb{E}^q(\sigma_{WO}(t, K)^2 | \text{WO} = K) - \sigma^2(t, K) \right)}{K^2 \sum_{i>j} \mathbb{E}^q(2(1 - \rho_{i,j}^0(t))\sigma_i(t, K)\sigma_j(t, K) \delta_{S_t^i = S_t^j, 1, \text{WO}_t > K, \text{WO}_t = S_t^i, 1})} - \frac{1}{2} \sum_{i>j} \mathbb{E}^q(2\sigma^2_i(t, K) - \sigma^2_j(t, K)) \delta_{S_t^i = S_t^j, 1, \text{WO}_t > K, \text{WO}_t = S_t^i, 1}) \]

\[\text{HSBC} \times \]

Structured Equity Research (HSBC) Local Correlation with Local Vol and Stochastic Vol: Towards Correlation dynamics? 10th January 2014 29 / 55
Why basket local correlation?

Worst Of Correlation (3)

Two important quantities:

- **Switching Local Time**: \(\delta_{t=\bar{t}} \)
- **Local Dispersion**:
 \[
 \frac{d < S_t^1, S_t^2 > + d < S_t^1, S_t^2 > - 2d < S_t^1, S_t^2 >}{dt} = \frac{d < S_t^1 - S_t^2, S_t^1 - S_t^2 >}{dt} = (\sigma^i S^i)^2 + (\sigma^j S^j)^2 - 2\rho_{i,j} \sigma^i \sigma^j S^i S^j
 \]

Local Dispersion = short correl, long volatility, positive quantity

cf. \(-2\rho_{i,j} \sigma^i \sigma^j S^i S^j + (\sigma^i S^i)^2 + (\sigma^j S^j)^2 = (\sigma^i S^i - \sigma^j S^j)^2 + 2(1 - \rho_{i,j})\sigma^i \sigma^j S^i S^j\)

Note: local dispersion in Spread Option Local equation:

\[
\frac{\partial C^{Spread}}{\partial t} = -r_t C^{Spread} + (r_t - q_t^{Spread})(C^{Spread} - K \frac{\partial C^{Spread}}{\partial K})
+ \frac{1}{2} \mathbb{E}^Q \left(\frac{d < S_t^1, S_t^2 > + d < S_t^2, S_t^2 > - 2d < S_t^1, S_t^2 >}{dt} \right) \delta_{Spread=K}
\]

Remember also Margrabe formula: \(\sigma = \sqrt{(\sigma^i)^2 + (\sigma^j)^2 - 2\rho_{i,j} \sigma^i \sigma^j} \)

\(\implies\) WO Call short disp product, spread option long disp product.
Why basket local correlation?

Local Correlation Models Limits

WO local Correlation:
- no real observable smile for WO vanillas
- Dynamic issue: only valid at inception (local vol -and forward- of WO model should change dynamically but how?)
- more complex and less stable numerically
- not much financial sense: how to infer a historical WO local correlation skew?
- but "chewing gum" effect

Basket local Correlation:
- not many observables but more precise idea of hypothetic smile
- Dynamic issue: only valid at inception (local vol of basket with changed weights should change dynamically but how?)
- simple and stable numerically
- financial sense (cf. historical observations)

=> we will study Basket Local Correlation.
Discussion : $\omega \in [0; 1]$?

- Not theoretically (no static arbitrage)
- True in practice if $\rho_{i,j}^0$ enough low (Ex: $\rho_{i,j}^0 = 0 \forall i,j$)
- Explanation ?
 - Possible to infer a positive implied correlation $\omega^l(K, T)$ for a standard model if $\rho_{i,j}^0 = 0$ for ex.
 - Gatheral-like formula :
 $$\rho_{i,j}^l(T, m)\sigma_{i}^l(T, m)\sigma_{j}^l(T, m) \simeq \frac{1}{T} \int_{0}^{T} \rho_{i,j}^L(t, \frac{mt}{T})\sigma_{i}^L(t, \frac{mt}{T})\sigma_{j}^L(t, \frac{mt}{T})dt$$
- Introduction of drift (continuous dividends) still OK.
Why basket local correlation?

Parametric Regression

Need to estimate:

\[E^Q \left(\sum_{i,j} w_i w_j S_t^i S_t^j \sigma(t, S_t^i) \sigma(t, S_t^j) \rho_{i,j}^0 \mid I_t^S = K \right) \]

\[E^Q \left(\sum_{i,j} w_i w_j S_t^i S_t^j \sigma(t, S_t^i) \sigma(t, S_t^j) \mid I_t^S = K \right) \]

What do they look like?

Figure: Variable To Explain versus Basket

Interest: instead of non parametric regression, natural regression on
\((1, B, B^2, \ldots, B^p)\) can also be used. Proves to be stable and complexity in \(O(Np)\)
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References
Results

Application to Eurostoxx smile.
Only two iterations that need 2000 simulations each: quick calibration. Here, $\rho_{i,j}^0 = 0$.

Figure: Fitting the Index Smile using Correlation Skew
Local Correlation Shape

Figure: Local Correlation Smile

Figure: ATM Local Correlation Skew Term Structure Eurostoxx (05/04/2013)
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References
Extension to Stochastic Volatility framework

Chosen volatility model = (continuous) Bergomi model:

\[
\frac{dS_t^i}{S_t^i} = \sigma(t, S_t^i)\sqrt{\xi_{t^i,t}^i}\left(\sqrt{1 - \omega(t, I_t^S)}dW_t^i + \sqrt{\omega(t, I_t^S)}dW_t^\perp\right)
\]

or

\[
\frac{dS_t^i}{S_t^i} = \sqrt{\xi_{t^i,t}^i}d\tilde{W}_t^i
\]

with:

\[
d\tilde{W}_t^i = \sqrt{1 - \omega(t, I_t^S)}dW_t^i + \sqrt{\omega(t, I_t^S)}dW_t^\perp
\]

\[
\frac{d\xi_{t^i,T}^i}{\xi_{t^i,T}^i} = \sigma_S^i \exp(-\kappa_S^i(T - t))dW_t^{i,S} + \sigma_L^i \exp(-\kappa_L^i(T - t))dW_t^{i,L}
\]

with:

\[
\xi_{t^i,T}^i = \mathbb{E}^Q(V_t^i | F_t)
\]

\[
<dW_t^i, dW_t^j> = \rho_{i,j}^0 dt
\]

\[
dW_t^{i,S} = \rho_S^i d\tilde{W}_t^i + \sqrt{1 - (\rho_S^i)^2(\alpha_t dW_t^i + \sqrt{1 - (\alpha)^2}dW_t^{i,S})}
\]

\[
dW_t^{i,L} = \rho_L^i d\tilde{W}_t^i + \sqrt{1 - (\rho_L^i)^2(\beta_t dW_t^i + \sqrt{1 - (\beta)^2}dW_t^{i,L})}
\]

\[
<dW_t^{i,S}, dW_t^{i,L}> = \rho_{SL}^i dt
\]

Comments:

- 3N + 2 brownians required \((NW, NW^L, NW^S, Z, W^\perp)\)
- Parametrization maintains mono underlying volatility skew due to stochastic vol.
Correlation Structure

Complicated PSD conditions? No, because direct use of brownians
\[\implies \text{no cholesky} \implies \text{computation time gain} \]
But: \(\alpha \) and \(\beta_i \in [-1; 1] \)
Notice that:
\[\beta_i = \frac{1}{\alpha} \frac{\rho_{SL}^i - \rho_S^i \rho_L^i}{\sqrt{1 - (\rho_S^i)^2} \sqrt{1 - (\rho_L^i)^2}} \]
but:
\[1 + 2 \rho_S^i \rho_L^i \rho_{SL}^i - (\rho_S^i)^2 - (\rho_L^i)^2 - (\rho_{SL}^i)^2 \geq 0 \text{ (cf. PSD for each underlying)} \]
\[\iff \left(\frac{\rho_{SL}^i - \rho_S^i \rho_L^i}{\sqrt{1 - (\rho_S^i)^2} \sqrt{1 - (\rho_L^i)^2}} \right)^2 \leq 1 \]
\[\iff \alpha \beta_i \in [-1; 1] \]

Comments:
- \(\alpha = 1 \): OK
- \(\rho_{SL}^i = \rho_S^i \rho_L^i \): OK for any \(\alpha \)
- Remember \(\alpha = 1 \): basket prices closest with LV and SV
Decorrelation Effect

Observation = "Decorrelation Effect with Stochastic Volatility"

If $\forall i, V_{i}^{Sto}(K) = V_{i}^{Loc}(K)$ then $V_{bskt}^{Sto}(K) \leq V_{bskt}^{Loc}(K)$ where $V=$ Call or Put

Why? Heuristic:

\[
\mathbb{E}^{Q}\left(\sum_{i,j} w_{i}w_{j}\sqrt{V_{i}}\sqrt{V_{j}}s_{i}^{t}s_{j}^{t}\rho_{i,j}\mid \sum_{i} w_{i}s_{i}^{t} = \sum_{i} w_{i}F_{i}^{t}\right) \approx \mathbb{E}^{Q}\left(\sum_{i,j} \frac{1}{N^{2}} \sqrt{V_{i}}\sqrt{V_{j}}\rho_{i,j}\mid \forall k, s_{k}^{t} = F_{k}^{t}\right)
\]

and $\mathbb{E}^{Q}\left(\sum_{i,j} w_{i}w_{j}(t, s_{i}^{t})\sigma_{i}(t, s_{i}^{t})(t, s_{i}^{t})s_{i}^{t}s_{j}^{t}\rho_{i,j}\mid \sum_{i} w_{i}s_{i}^{t} = \sum_{i} w_{i}F_{i}^{t}\right) \approx \sum_{i,j} \frac{1}{N^{2}} \sigma_{i}(t, F_{i}^{t})\sigma_{j}(t, F_{j}^{t})\rho_{i,j}$

Cauchy-Schwarz: $\mathbb{E}^{Q}\left(\sqrt{V_{i}}\sqrt{V_{j}}|s_{i}^{t} = F_{i}^{t}, s_{j}^{t} = F_{j}^{t}\right) \lesssim \sqrt{\mathbb{E}^{Q}(V_{i}|s_{i}^{t} = F_{i}^{t})\mathbb{E}^{Q}(V_{j}|s_{j}^{t} = F_{j}^{t})}$

or $\mathbb{E}^{Q}\left(\sqrt{V_{i}}\sqrt{V_{j}}|s_{i}^{t} = F_{i}^{t}, s_{j}^{t} = F_{j}^{t}\right) \lesssim \sigma_{i}(t, F_{i}^{t})\sigma_{j}(t, F_{j}^{t})$

so that $\mathbb{E}^{Q}\left(\sum_{i,j} w_{i}w_{j}\sqrt{V_{i}}\sqrt{V_{j}}s_{i}^{t}s_{j}^{t}\rho_{i,j}\mid \sum_{i} w_{i}s_{i}^{t} = \sum_{i} w_{i}F_{i}^{t}\right) \lesssim \mathbb{E}^{Q}\left(\sum_{i,j} w_{i}w_{j}(t, s_{i}^{t})\sigma_{i}(t, s_{i}^{t})(t, s_{i}^{t})s_{i}^{t}s_{j}^{t}\rho_{i,j}\mid \sum_{i} w_{i}s_{i}^{t} = \sum_{i} w_{i}F_{i}^{t}\right)$
Decorrelation Effect

The decorrelation effect depends a great deal on the value of \(\alpha \) (correlation between vols) and a little on the size of the basket.

Figure: Decorrelation Effect depending on basket size
Historical value of implied volatilities

Figure: Historical correlation between vols for main indices

⇒ High level of correlation between vols.

Link between Correl and α? One factor case:

$$\rho_{V_i, V_j} = \rho_{S_i, V_i} \rho_{S_j, V_j} + \alpha^2 \sqrt{1 - \rho_{S_i, V_i}^2} \sqrt{1 - \rho_{S_j, V_j}^2}$$

Standard values: $\alpha \approx 1$ or $\alpha > 1 \implies$ need for level correction.
Calibration formula

Calibration (no div case) using fixed point algorithm with parametric (polynomial in basket moneyness) or non-parametric regression.

Formula:

\[\omega^{(n+1)}(t, K) = \frac{K^2 \sigma(t, K)^2 - \mathbb{E}^Q(\sum_{i,j} w_i w_j S_{t_i}^{i,(n)} S_{t_j}^{j,(n)} \sigma(t, S_{t_i}^{i,(n)}) \sigma(t, S_{t_j}^{j,(n)}) \sqrt{\xi_t^{i,t}} \rho_{i,j}^{0} \mid I_{t}^{S,(n)} = K)}{\mathbb{E}^Q(\sum_{i,j} w_i w_j S_{t_i}^{i,(n)} S_{t_j}^{j,(n)} \sigma(t, S_{t_i}^{i,(n)}) \sigma(t, S_{t_j}^{j,(n)}) (1 - \rho_{i,j}^{0}) \mid I_{t}^{S,(n)} = K)} = \frac{K^2 \sigma(t, K)^2 - f^{(n)}(t, K)}{g^{(n)}(t, K) - f^{(n)}(t, K)} \]
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References
Analysis of correlation product prices in different models

World Basket as of 05/04/2013. Maturity = 1Y. Strikes in Forward Basket Moneyness.

<table>
<thead>
<tr>
<th>Product/Model</th>
<th>Without CS</th>
<th>With CS</th>
<th>With CS and SV / $\alpha = 1$</th>
<th>With CS and SV / $\alpha = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward WO</td>
<td>90.15%</td>
<td>90.25%</td>
<td>90.48%</td>
<td>90.52%</td>
</tr>
<tr>
<td>WO Call 90</td>
<td>8.73%</td>
<td>8.45%</td>
<td>8.53%</td>
<td>8.54%</td>
</tr>
<tr>
<td>WO Call 95</td>
<td>6.27%</td>
<td>5.97%</td>
<td>6.00%</td>
<td>6.01%</td>
</tr>
<tr>
<td>WO Call 100</td>
<td>4.28%</td>
<td>3.98%</td>
<td>3.98%</td>
<td>3.98%</td>
</tr>
<tr>
<td>WO Call 105</td>
<td>2.76%</td>
<td>2.49%</td>
<td>2.47%</td>
<td>2.47%</td>
</tr>
<tr>
<td>WO Call 110</td>
<td>1.66%</td>
<td>1.14%</td>
<td>1.42%</td>
<td>1.42%</td>
</tr>
<tr>
<td>Forward BO</td>
<td>109.49%</td>
<td>109.27%</td>
<td>109.34%</td>
<td>109.32%</td>
</tr>
<tr>
<td>BO Put 90</td>
<td>1.88%</td>
<td>2.34%</td>
<td>2.28%</td>
<td>2.32%</td>
</tr>
<tr>
<td>BO Put 95</td>
<td>2.81%</td>
<td>3.32%</td>
<td>3.24%</td>
<td>3.28%</td>
</tr>
<tr>
<td>BO Put 100</td>
<td>4.11%</td>
<td>4.64%</td>
<td>4.55%</td>
<td>4.58%</td>
</tr>
<tr>
<td>BO Put 105</td>
<td>5.84%</td>
<td>6.38%</td>
<td>6.27%</td>
<td>6.30%</td>
</tr>
<tr>
<td>BO Put 110</td>
<td>8.09%</td>
<td>8.62%</td>
<td>8.48%</td>
<td>8.51%</td>
</tr>
</tbody>
</table>

Spread Option Eurostoxx versus SP500. Strikes in Forward Spread Moneyness.

<table>
<thead>
<tr>
<th>Product/Model</th>
<th>Without CS</th>
<th>With CS</th>
<th>With CS and SV / $\alpha = 1$</th>
<th>With CS and SV / $\alpha = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread Option -10</td>
<td>12.46%</td>
<td>12.31%</td>
<td>12.45%</td>
<td>12.92%</td>
</tr>
<tr>
<td>Spread Option -5</td>
<td>9.00%</td>
<td>8.85%</td>
<td>8.87%</td>
<td>9.47%</td>
</tr>
<tr>
<td>Spread Option 0</td>
<td>6.15%</td>
<td>6.03%</td>
<td>6.20%</td>
<td>6.72%</td>
</tr>
<tr>
<td>Spread Option 5</td>
<td>3.96%</td>
<td>3.87%</td>
<td>4.01%</td>
<td>4.52%</td>
</tr>
<tr>
<td>Spread Option 10</td>
<td>2.40%</td>
<td>2.34%</td>
<td>2.53%</td>
<td>2.90%</td>
</tr>
</tbody>
</table>

Call on Spread : Long Vovol, Short Correl between vols. Stochastic Vol parameters (for three underlyings):

<table>
<thead>
<tr>
<th>κ_S</th>
<th>κ_L</th>
<th>σ_S</th>
<th>σ_L</th>
<th>ρ_S</th>
<th>ρ_L</th>
<th>ρ_{SL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.0%</td>
<td>12.5%</td>
<td>350%</td>
<td>100%</td>
<td>-50%</td>
<td>-50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Structured Equity Research (HSBC)
Focus on correlation products

Zoom on Cancellable

Product generally considered as a simple product but:

- interest rate risk
- dividend risk
- volatility risk (with vanna and volga changing signs!)
- correlation risk
- pin risk (need for smoothing)

Case of 3Y autocall product:

- 3Y product
- three underlyings (World Basket)
- can be cancelled every year at 100
- short Put 100
- Discrete DI 60

<table>
<thead>
<tr>
<th>Model</th>
<th>LV</th>
<th>LSV ($\alpha = 1$)</th>
<th>LV + CS</th>
<th>LSV + CS, $\alpha = 1$</th>
<th>LSV + CS, $\alpha = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basket Cancellable</td>
<td>93.88%</td>
<td>94.14%</td>
<td>93.61%</td>
<td>94.04%</td>
<td>94.02%</td>
</tr>
<tr>
<td>WO Cancellable</td>
<td>86.15%</td>
<td>85.94%</td>
<td>87.15%</td>
<td>87.44%</td>
<td>87.55%</td>
</tr>
</tbody>
</table>

Two main conclusions:

- Correlation Skew and Stochastic Volatility don’t add (cross effect cannot be neglected)
- Price doesn’t depend on correlation between vols
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References
Main conclusions

Main issues with correlation in equity:

- Constraints: must remain between -1 and 1, must be part of PSD matrices
- Numerous elements compared to volatility
- Illiquid parameter
- Difficult to integrate new dimensions (overlap between baskets)

Next parameter to gain in complexity, but long evolution.

Currently = essentially studied for improved Macro Risk Management.
Outline

1. Local Correlation: where are we?
2. PnL equation
3. Observe correlation
 - Evidence of Correlation Skew
4. Model correlation?
 - Introduce Decorrelation
 - New Methods in Finance
 - Local Formulae: Derivate Market Information
5. Why basket local correlation?
6. Calibration results: Local Volatility
7. Extension to Stochastic Volatility
 - Need to introduce specific parametrization
 - Decorrelation with Multi-Underlying Stochastic Volatility
 - Usual values of correl between vols
8. Focus on correlation products
9. Main conclusions
10. References
References

- Reghai : Using Local Correlation models to improve option hedging
- Reghai : Breaking correlation breaks
- Avellaneda/Boyer-Olson/Busca/Friz : Reconstructing Volatility
- Dupire : Pricing with a smile
- Langnau : Introduction into Local Correlation Modelling
- Sbai-Jourdain : Coupling Index and stocks
- Guyon/Henry-Labordere : The smile calibration problem solved
- Christoph Burgard : New Developments in Vol and Var Products
- Lee et all. : Index Volatility surface via moment-matching techniques
- Piterbarg : Markovian projection for volatility calibration
Appendix 1 : Pathwise equality

True Model = believed to be Index model with Local Vol :
\[\mathbb{E}_t^Q((l_T - K)^+) = C(t, l_t, K, T) \]

\[
dl_t = l_t \sigma(t, l_t) dW_t \\
d\tilde{l}_t = \sum_i w_i S^i_t \sigma_i(t, S^i_t) dW^i_t
\]

One can write :

\[
\mathbb{E}_0^Q(C(T, l_T)) = C(0, l_0) + \int_0^T \mathbb{E}_0^Q(dC) \\
= C(0, l_0) + \frac{1}{2} \int_0^T \mathbb{E}_0^Q(\frac{\partial^2 C}{\partial x^2}(d < \tilde{l}_t, \tilde{l}_t > - d < l_t, l_t >))
\]

Pathwise equality :
\[d < \tilde{l}_t, \tilde{l}_t >= d < l_t, l_t >. \]
Or :
\[\sum_{i,j} w_i w_j S^i_t S^j_t \sigma_i(t, S^i_t) \sigma_j(t, S^j_t) \rho_{i,j} = \sigma^2(t, l_t). \]
Sufficient condition, but not necessary.
Other sufficient condition (but still not necessary for models like in Lucic 2009) :
\[
\mathbb{E}_0^Q(\sum_{i,j} w_i w_j S^i_t S^j_t \sigma_i(t, S^i_t) \sigma_j(t, S^j_t) \rho_{i,j}^{Loc}(S^1_t, \ldots, S^n_t) | S^1_t, \ldots, S^n_t) = \mathbb{E}_0^Q(\sum_{i,j} w_i w_j \sqrt{V^i_t} \sqrt{V^j_t} \rho_{i,j}^{Sto} | S^1_t, \ldots, S^n_t)
\]
Appendix 2 : WO formula demonstration(1)

Ito-Tanaka to WO Call (abusive notations) :

\[
f(x_1, \ldots, x_n) = \left(\sum_{l} x_l \prod_{k \neq l} 1_{x_l < x_k} - K \right)^+
\]

\[
\frac{\partial f}{\partial x_i} = \prod_{k \neq i} 1_{x_i < x_k} 1_{x_i \geq K} (\text{cf. other terms cancel out})
\]

\[
\frac{\partial^2 f}{\partial x_i^2} = \prod_{k \neq i} 1_{x_i < x_k} 1_{x_i = K} - \left(\sum_{j \neq i} \left(\prod_{k \neq i, k \neq j} 1_{x_i < x_k} 1_{x_i = x_j} \right) 1_{x_i \geq K} \right)
\]

\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = \prod_{k \neq i, k \neq j} 1_{x_i < x_k} 1_{x_i = x_j} 1_{x_i \geq K}
\]
Appendix 2: WO formula demonstration(2)

Deterministic interest rates:

\[
d\mathbb{E}^Q \left(\exp\left(- \int_0^t r_s ds\right) f(S^1_t, \ldots, S^1_t) \right) = \frac{\partial C}{\partial t} dt \\
= -r_tC dt + \sum_i \mathbb{E}^Q \left(\exp\left(- \int_0^t r_s ds\right) \frac{\partial f}{\partial x_i} (r_t - q^i_t) S^i_t \right) dt \\
+ \frac{1}{2} \sum_i \mathbb{E}^Q \left(\exp\left(- \int_0^t r_s ds\right) \frac{\partial^2 f}{\partial x_i^2} d < S^i_t > \right) \\
+ \sum_{j>i} \mathbb{E}^Q \left(\exp\left(- \int_0^t r_s ds\right) \frac{\partial^2 f}{\partial x_i \partial x_j} d < S^i_t, S^j_t > \right)
\]

Rearranging terms give final result.
Appendix 2: WO formula demonstration (3)

Same formula for BO options:

$$\frac{\partial C_{BO}}{\partial t} = -r_tC_{BO} + (r_t - q_t^{BO}(K))(C_{BO} - K) + \frac{1}{2}K^2 \frac{\partial^2 C_{BO}}{\partial K^2} \mathbb{E}^Q(\sigma_{BO}^2(t,K) | BO = K) + \frac{1}{2} \sum_{i > j} \mathbb{E}^Q \left(\frac{d < S^i_t - S^j_t, S^i_t - S^j_t >}{dt} \delta_{S^i_t = S^j_t} \mathbb{1}_{BO_t > K} \mathbb{1}_{BO_t = S^i_t} \right)$$

and Rainbow (calculation is awful):

$$Rbw(S^1, \ldots, S^n) = \sum_j w_j S(j) \text{ with } S^{(1)} \geq \ldots \geq S^{(n)}$$

$$\frac{\partial C_{Rbw}}{\partial t} = -r_tC_{Rbw} + r_t(C_{Rbw} - K) \frac{\partial C_{Rbw}}{\partial K} - \mathbb{E}^Q(\sum_i \sum_j w_j q_t^i S(j) \mathbb{1}_{S(j) = S^i_{Rbw} > K})$$

$$+ \frac{1}{2} \frac{\partial^2 C_{Rbw}}{\partial K^2} \mathbb{E}^Q \left(\sum_{i,j} w_k w_l S(k) = S^i, S(l) = S^j \frac{d < S^i_t, S^j_t >}{dt} \bigg| \tilde{Rbw} = K \right)$$

$$- \frac{1}{2} \sum_{i > j} \mathbb{E}^Q \left(\frac{d < S^i_t - S^j_t, S^i_t - S^j_t >}{dt} \delta_{S^i_t = S^j_t} \mathbb{1}_{Rbw > K} \sum_l (w_{l+1} - w_l) \mathbb{1}_{S(l) = S^i_t} \right)$$

Last term disappears and other terms equal to basket equation for equally weighted baskets.
Disclaimer

This document is issued in the France by HSBC France. HSBC France is authorised by the CECEI and regulated by the Autorité des Marchés Financiers (“AMF”) and the Authorité de Contrôle Prudentielles. HSBC France is a member of the HSBC Group of companies (“HSBC Group”). Any member of the HSBC Group, together with their directors, officers and employees may have traded for their own account as principal, underwritten an issue within the last 36 months, or have a long or short position in any related instrument mentioned in this material.

HSBC France or any of its affiliate ("HSBC") may be solicited in the course of its placement efforts for a new issue by investment clients for whom it already provides other services. HSBC may allocate securities to its own proprietary book or to an associate of HSBC Group. This represents a potential conflict of interest. HSBC has internal arrangements designed to ensure that it will give unbiased and full advice to a corporate finance client about valuation and pricing of the Issue and internal systems, controls and procedures to identify and to manage potential conflicts of interest.

This document is for information and convenient reference, and is not intended as an offer or solicitation of the purchase or sale of any security or other investment. Except in the case of fraudulent misrepresentation, HSBC does not make any representation or warranty (express or implied) of any nature or accept any responsibility or liability of any kind for accuracy or sufficiency of any information, statement, assumption or projection in this document, or for any loss or damage (whether direct, indirect, consequential or other) arising out of reliance upon this document. Information in this document has not been independently verified by HSBC. Any reference in this document to particular proposed terms of issue is intended as a summary and not a complete description. Terms or characteristics are subject to change. You are solely responsible for making your own independent appraisal of and investigations into the products, investments and transactions referred to in this document and you should not rely on any information in this document as constituting investment advice. Neither HSBC nor any of its affiliates are responsible for providing you with legal, tax or other specialist advice and you should make your own arrangements in respect of this accordingly.

Any projection, forecast, estimate or other "forward-looking" statement in this document only illustrates hypothetical performance under specified assumptions of events or conditions, which may include (but are not limited to) prepayment expectations, interest rates, collateral and volatility. Such projections, forecasts, estimates or other "forward-looking" statements are not reliable indicators of future performance. As with any mathematical model that calculates results from inputs, results may vary significantly according to the values input. You should understand the assumptions and evaluate whether they are appropriate for their purposes. Some relevant events or conditions may not have been considered in such assumptions. Actual events or conditions may differ materially from assumptions. Past performance is not a reliable indicator of future performance.

This document is intended for persons who are professional clients or eligible counterparties (as defined in the rules of the AMF) only and is not intended for distribution to, or use by, retail clients. This document also is not intended for distribution to, or use by, any person or entity in any jurisdiction or country where such distribution or use would be contrary to law or regulation. In particular, this document and the information contained herein do not constitute an offer of securities for sale in the United States and are not for publication or distribution to persons in the United States (within the meaning of Regulation S under the Unites States Securities Act of 1933, as amended).

Information in this document is confidential. Distribution of this document, or information in this document, to any person other than an original recipient (or to such recipient’s advisors) is prohibited. Reproduction of this document, in whole or in part, or disclosure of any of its contents, without prior consent of HSBC or an associate, is prohibited. This document should be read in its entirety. This document remains the property of HSBC and on request this document, and all other materials provided by the HSBC Group relating to proposals contained herein, must be returned and any copies destroyed. The issue of this document shall not be regarded as creating any form of contractual relationship. This document is a "financial promotion" within the scope of the rules of the AMF.